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Abstract. Anisotropic Ginzburg-Landau superconductors of extreme type-II are considered in an approxi-
mation where magnetic field fluctuations are neglected. A formulation of the scaling properties is presented
for the singular part of the free energy density in the presence of a magnetic field. From the existence of
a magnetization, a diamagnetic susceptibility and superconductivity we determine the limiting behavior
of the scaling function in the vicinity of the zero field transition temperature, where critical fluctuations
dominate. Our predictions for the temperature and field dependence of magnetization, magnetic torque
and melting line etc., uncover the universal critical properties and provide an extension of hitherto used
mean-field treatments. The results are consistent with experimental data.

PACS. 74.25.-q General properties; correlations between physical properties in normal superconducting
states – 05.70.Jk Critical point phenomena

There is considerable evidence that the zero-field tran-
sition in high Tc superconductors is a critical point be-
longing to the universality class of the three dimensional
XY model [1–8]. The absence of mean-field like behavior
can be understood by noting that thermal fluctuations are
much larger in these materials than in conventional super-
conductors, since their free energy density multiplied by
the correlation volume is comparable to the thermal en-
ergy over a significant temperature range around Tc [9].
However, when vector potential fluctuations are taken into
account, one concludes that this transition might be dif-
ferent [10]. For extreme type-II superconductors, such as
high-Tc materials, the coupling to vector potential fluctu-
ations is weak. Consequently, there is a range of temper-
atures close, but not asymptotically close, to Tc, in which
vector potential fluctuations can be neglected. Therefore
the critical behavior is that of the XY model, which also
describes the superfluid transition in 4He.

Thus, in the presence of a small applied magnetic field
H, the singular part of the free energy density fs is ex-
pected to exhibit a scaling behavior similar to that ob-
tained in the Gaussian approximation. Starting from a
Ginzburg-Landau action with an effective mass anisotropy
(Mx,My,Mz) and an applied field H = (0,Hy,Hz) =
H(0, sin(δ), cos(δ)), the singular part of the free energy

a e-mail: jms@physik.unizh.ch

density adopts the scaling form
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where ± = sign(t) and t = T/Tc − 1. In zero field (i.e.
z = 0) one recovers for G±(0) = 1 the scaling expres-
sion for the 3D XY universality class [11,12]. ξ±i is the
correlation length along direction i, which diverges as
ξ±i = ξ±i,0|t|

−ν , where ν ≈ 2/3, and the Q±1 are univer-

sal numbers [11,12]. We note that in the isotropic case
(Mx = My = Mz) this scaling form was confirmed by
perturbation theory [13].

In principle, renormalization group calculations should
allow an unambiguous calculation of the scaling function
G. In the low field regime, however, the Landau energy
levels of Cooper pairs are closely spaced and must all be
taken into account. Under this circumstances the difficul-
ties which result from the expansion of the order param-
eter in terms of the Landau levels have impeded the cal-
culation of the scaling function.
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In this letter, we describe an alternative approach. The
functional form of G(z) for relevant regimes of the scaling
variable z are derived from the existence of the magne-
tization, the diamagnetic susceptibility and a supercon-
ducting phase in the appropriate domain of z. Using the
resulting limiting behavior of G(z), the scaling properties
of any observable is then obtained via the singular part of
the free energy density. Here we concentrate on magneti-
zation, susceptibility, melting line and magnetic torque.

For Hy = 0 we obtain from the free energy density,
equation (1), for the fluctuation contribution to the dia-
magnetic magnetization, mz = −dfs/dHz, the scaling re-
lation

mz = −
Q±1 kBT
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Its existence at t = 0 and finite Hz (i.e. z →∞) leads to
the universal relation
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and determines G(z) in this limit. Thus, the combination
of measurable properties entering the left hand should be
independent of the material under investigation. This re-
lation appears to be well confirmed for YBa2Cu3O7−δ [5].
For small fields and t > 0 (i.e. z → 0) the existence of the
susceptibility, χ = mi/Hi (i = x, y, z), implies together
with equation (1)
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Another quantity of interest is ∂mi/∂ lnHi = Hi∂m/∂Hi

for t < 0 and H → 0. Taking the scaling form equation (1)
for the singular part of the free energy density we find
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by invoking the universal relation between Tc and the crit-
ical amplitudes of the transverse correlation length,

kBTc = (Φ2
0ξ
T
i,0)/(16π3λ2

i,0),

which is based on the existence of a superconducting phase
for t < 0 and H → 0. Here we used ξTi = ξTi,0|t|

−ν , as

well as λi = λi,0|t|−ν/2 for the penetration depth, and
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Fig. 1. Qualitative behavior of the universal scaling function
in terms of dG/dz vs. zsign(t). the black dot marks the possi-
ble location of the melting transition. The arrows indicate the
limits 1, 2 and 3 considered here. The inset shows the corre-
sponding limits in the (H, T )-plane, where HM is the melting
line.
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T
y [2]. Thus, this

limit indeed requires the existence of superconductivity.
The resulting logarithmic dependence of mz on Hz is also
obtained from the London model [14], which assumes that
the vortex cores do not overlap; this condition is satisfied
for z = Hξ2

x/Φ0 � 1 and consistent with z → 0 for t < 0.
We have shown that the limits

lim
z→0

dG−(z)/dz = C−2,0 ln(z),
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dG±(z)/dz = C±∞z
1/2,

lim
z→0

dG+(z)/dz = C+
0 z, (7)

of the universal scaling function can be derived from the
existence of superconductivity, the magnetization and the
susceptibility. The resulting qualitative behavior of dG/dz
versus zsign(t) is shown in Figure 1, where the arrows 1,
2 and 3 indicate the limits listed in equation (7). The inset
shows the corresponding behavior in the (H, T )-plane. As
phase transition lines are concerned, on application of a
magnetic field at temperatures below Tc the mean-field ap-
proximation predicts that in type-II superconductors the
transition occurs in two stages: if the magnetic field is re-
duced one first encounters at Hc2(T ) a transition from the
normal state to a mixed phase, and then, at a lower crit-
ical field Hc1(T ), a transition to the Meissner state. The
two critical lines meet at the zero-field transition point Tc.
Experimentally, however, the thermodynamic properties
of high-Tc cuprates show no evidence for a sharp anomaly
at some Hc2(T ), but there is strong evidence for a first
order phase transition line [15–17], which ends at the zero
field transition point Tc and describes the vortex lattice
melting.

Thus, by approaching the critical endpoint Tc along
the melting line the transition becomes gradually sec-
ond order [15]. Given this fact, the scaling function G(z)
should have a singularity at some value zM of the scaling
variable, so that according to equation (2) the tempera-
ture and angular dependence of the melting line near the
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multicritical point Tc follows from
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This behavior appears to be fully consistent with the ex-
perimental data for the melting [15–17] and irreversibility
lines of YBa2Cu3O7−δ [18].

Next we consider the magnetic torque, where the pro-
nounced effective mass anisotropy of the high-Tc materials
enters in an essential way. Using the scaling expression for
the singular part of the free energy density, equation (1),
we obtain for the fluctuation contribution to the torque,
T = m×H, the expression
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Clearly, there is no torque in an isotropic superconduc-
tor (i.e. Mx = My = Mz). We note, that (i) the field-,
angular- and temperature-dependence of the torque can
be measured very accurately [19,20], (ii) various mean-
field models have been proposed and used to extract the
effective mass anisotropy and penetration depth in high-
Tc materials [14,19,21,22]. Thus, the strong evidence for
critical fluctuations, as cited above, calls for a more rig-
orous treatment. It can be readily obtained by invoking
the scaling approach in the limits given by equation (7).
Indeed, from equations (7, 9) we obtain for t < 0, H → 0
(i.e. limit 1 in Fig. 1) the expression
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while for t = 0, H 6= 0 (i.e. limit 2 in Fig. 1)
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and for t > 0, H → 0 (i.e. limit 3 in Fig. 1)
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It is important to emphasize that the scaling approach is
not restricted to the so far considered gauge

H = H(0, sin(δ), cos(δ)).
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Fig. 2. Magnetic torque TcV of untwinned YBa2Cu3O7−δ with
Tc = 91.7 K and V = 0.89 × 10−3 cm3, upon rotating around
the c-axis at H = 8 kOe and T = 90 K. The solid line corre-
sponds to equation (10) with x = c, y = b and z = a, for the
critical parameters cited in the text, the open circular symbols
are experimental data taken from [23].

Indeed, H = H(sin(δ), 0, cos(δ)) leads to Ty and H =
H(cos(φ), sin(φ), 0) to Tz , and the scaling variables adopt
the forms
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,

respectively.
We are now prepared to analyze experimental mag-

netic torque data, taken in the appropriate limits, to un-
cover the potential of the scaling approach and to illus-
trate the estimation of fundamental critical properties.
As the limit 1 is concerned, a rather complete study has
been performed with an untwinned YBa2Cu3O7−δ single
crystal in reference [23] upon rotating the field around
the a, b and c axes. Using the angular dependence of
their torque data for the fields rotated around the b and
a axes we obtain by means of our scaling approach (i.e.

Eq. (10)) the estimates: ξ−b,0 ≈ 14.7 Å,
√
Mc/Mb ≈ 8.95,√

Mb/Ma ≈ 0.84, ξ−a,0 =
√
Mb/Maξ

−
b,0 ≈ 12.4 Å and

ξ−c,0 =
√
Mb/Mcξ

−
b,0 = 1.64 Å. The critical amplitudes

of the penetration depth follow then via the universal
relation kBTc = (Φ2

0ξ
T
i,0)/(16π3λ2

i,0), rewritten in the

form kBTc = (Φ2
0ξ
−
a,0

√
Mb/Mc)/(16π3λ2

b,0), and we ob-
tain λa,0 ≈ 1153 Å, λb,0 ≈ 968 Å and λc,0 ≈ 8705 Å.
The quality of these critical parameters relies on the ap-
plicability of equation (10), requiring that z � 1. This
condition is reasonably well satisfied, 0.02 ≤ z ≤ 0.15, for
H = 8 kOe, T = 90 K and Tc = 91.7 K, where the exper-
iment has been performed [23]. Given this set of critical
amplitudes and the torque at angle δ, normalized with re-
spect to the sample volume, the universal constant Q−1 C

−
20

in equation (10) is then readily estimated: Q−1 C
−
20 ≈ 0.68.

On this basis, the torque for a field rotated around the c-
axis can be calculated without any adjustable parameter.
Indeed, for H = H(cos(φ), sin(φ), 0) the scaling expres-
sion corresponds to equation (10) with x = c, y = b and
z = a. Using the parameters cited above, we plotted in
Figure 2 the angular dependence of TcV . For comparison
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Fig. 3. Magnetic torque Tx(δ) for a HgBa2CuO4+δ with Tc =
95.6 K and V = 1.26×10−6 cm3 at H = 14 kOe, upon rotating
the field from the c-axis to an unknown direction in the ab-
plane. The upper figure (a) shows data for T = 90.9 K and
the lower one for T = 104.5 K. The solid lines correspond to
nonlinear least square fits to equation (10) in panel (a) and
equation (12) in panel (b).

we included the experimental data from [23]. Because
there 0.007 ≤ z ≤ 0.0083, the condition for the applica-
bility of equation (10) is well satisfied and the remarkable
agreement with the experimental data points to a consis-
tent description of the experimental torque data of [23] in
terms of our estimates for the fundamental critical ampli-
tudes.

Finally, to explore the applicability of the three di-
mensional scaling approach to materials with more pro-
nounced effective mass anisotropy, and to provide ex-
perimental evidence for the limit 3 as well as for the
universality of Q−1 C

−
2,0, we proceed with an analysis of

the angular dependence of reversible torque data of a
HgBa2CuO4+δ single crystal with Tc = 95.6 K, taken at
H = 14 kOe and various temperatures, upon rotating the
field from the c-axis to an unknown direction in the ab-
plane. Experimental details are described elsewhere [20,
24]. Figure 3a shows data for T = 90.9 K, where equa-
tion (10) is expected to apply with Ma ≈ Mb ≡ M‖.
The solid line shows the best fit to equation (10), yield-
ing

√
Mc/M‖ ≈ 28.8 and ξ−‖,0 ≈ 27 Å, 0.01 ≤ z ≤ 0.27.

Thus, the condition for the applicability of equation (10)
is reasonably well satisfied. Invoking then again the uni-
versal relation kBTc = (Φ2

0ξ
−
‖,0

√
M‖/Mc)/(16π3λ2

‖,0), we

obtain λ‖,0 ≈ 784 Å and Q−1 C
−
2,0 ≈ 0.71. Recalling the

previous YBa2Cu3O7−δ-result Q−1 C
−
2,0 ≈ 0.68, the exper-

imental verification of the universality of Q−1 C
−
2,0 appears

to be established.
In the limit 3, where equation (12) applies, the torque

is expected to exhibit the simple sin(δ) cos(δ) behav-
ior. As shown in Figure 3b, this feature is experimen-
tally well confirmed in HgBa2CuO4+δ at T = 104.5 K
and H = 14 kOe, where 0.0006 ≤ z ≤ 0.017 with
ξ+
‖,0 ≈ 10.5 Å. Here we used the universal relation ξ+

‖,0 =

ξ−‖,0(R+/R−)(A−/A+)1/3 with R+ ≈ 0.36, R− ≈ 0.96

and A+ ≈ A− [2,11,12]. The fit to equation (12) yields
for the universal constant the estimate Q+

1 C
+
0 ≈ 0.17. In

the limit 2 equation (11) applies as long as z � 1, which
requires that (ξ+

‖ )2 � (M⊥Φ0)/(M‖H). Unfortunately, we

are not aware of torque data which satisfy this condition.
In conclusion, we presented a formulation of the scaling

properties of the singular part of the free energy density
in the presence of a magnetic field for anisotropic extreme
type-II superconductors. Our results for the temperature
and field dependence of magnetization, magnetic torque,
melting line, etc. uncover the universal critical proper-
ties and provide a basis to handle and extract the effec-
tive mass anisotropy as long as the continuum version of
the Ginzburg-Landau description applies. Moreover, these
results provide an extension of hitherto used mean-field
treatments of the magnetic torque and are consistent with
experimental data.
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